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A novel computationally fast appreach, the volume element
method, for calculating the electrostatic field in arbitrary inhomoge-
neous dielectric media with open boundary condition is presented.
The method is tested for accuracy by comparing the numerically
calculated electrostatic fields against those analytically obtained for
a dielectric sphere and a dielectric ellipsoid in a uniform field and
a dielectric sphere near a charge. © 1995 Academic Press, Inc.

1. INTRODUCTION

In the first paper in this series |1] we surmarized different
numerical methods for calculating electrostatic potential and
field for an arbitrary-shaped inhomogeneous dielectric medium
with open boundary condition. We presented a novel, computa-
tionally fast, and general approach for solving such problems.
This approach consisted of two main steps. In step 1, one
tessellates the space of interest into cubical cells and calculates
the effective dielectric constants for each cell using a so-called
effective parameter for interfacial cells (EPIC) method. In step
2, one solves the electrostatic problem by placing an appropriate
charpe distributions on the boundaries of cells.

In (his paper, we describe another method in which one still
follows siep 1, but in step 2 one solves the clectrostatic problem
by placing appropriate fictitious charges inside each cell. We
refer to this method as the volume element method (VEM).
Step 1 is described in detail in the first paper and here we
assume that we have a space consisting of cubical cells, each
cell in general consisting of materials of different dielectric
properties.

The next section is devoted to the description and details of
the volume element method. As in the first paper, we evaluate
this method by comparing the results obtained by this method
against analytical results from theee cases of (1) a dielectric
sphere in a uniform electric field; (2) a dielectric ellipsoid in a
uniform electric field, and (3) a dielectric sphere ina point charge
field. This evaluation of the method is given in Section 3. As we
will see, the volume element method is somewhalt less accurate
than the indirect boundary element method of the first paper but
is compulationally faster. In Section 4, we make afew concluding
rermarks and point out directions for future research.
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2. VOLUME ELEMENT METHOD

As noted in the Introduction, we use the EPIC method, de-
scribed in the first paper in this series [ 1], to replace the problem
of an arbitrary shaped dielectric inhomogencous medivm with
N X N X N cubic cells, each consisting of only one kind
of material, with effective dielectric parameters specified for
each cell.

In general, due to changes in the dielectric constant, we
would have a polarized surface charge on the boundary between
the cells as well as a volume charge inside the cell. In the
volume element method, we assume that the polarized charge
is only inside the cell volume and the impending field is the
sum of fields due to these charges. The surface charges on the
boundaries between cells is minimized by volume linearization
of effective dielectric parameters so that there is no abrupt
change of dielcctric parameters between two neighboring cells.
This volume lincarization is described in the next subsection,
which is followed by the general formulation of the approach
and specific details.

2.1, Velume Linearization

Consider three neighboring volume elements ¢ — 1, i, and
i + 1 (see Fig. la), with effective dielectric constants ™', &',
and £7', respectively, as calculated by using EPIC. Let us for
the moment focus on the x-direction. Qur goal is to find another
set of dielectric constants for each cell, such that there is mini-
mial discontinuity of dielectric constants between neighboring
cells. Intuitively, for the interface between two cells one can
take either the arithmetic average (see Fig. 1b) or the harmonic
average (see Fig. Ic) of two neighboring cells, or a simple
average of these two averages; i.e., for the interface between
i — 1 and i cells,

Zsi—l Sl' BE_I + Si
i-1i — o Tro T £ 4
( TetT 2 )/ a \

with a similar formula for £4*? for the interface between i and
i + 1 cells. To ensure continuity of the dielectric constant. we
then assume for the dielectric constant of cell i the average value
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FIG. 1. Volume linearization.
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and for the gradient of the dielectric constant in cell i the value

68; siH—] — 8i—l.i

dx Ax ’ (3)

where Ax is the width of the cell / in the x-direction, We carry
out similar calculations for the y and z directions.

The average dielectric constant and its gradient, as given by
Egs. (2) and (3), will be the parameters which we use in the
rest of this paper. For simplicity, we drop the bar and let
(&,, &, &,} and their derivatives represent the average valves
for the volume elements and not the effective parameters used
by EPIC.

We should note that there are many ways to specify the
interfacial dielectric constant. We tried the arithmetic average,

the harmontic average, and the simple average of these averages
[Eq. {(1)] and found the last one to be the most accurate in
terms of calculation of electrostatic fields.

2.2. Formulation

The electrostatic potential @ on an arbitrary point (x, y, z)
in a homogeneous dielectric medium of dielectric constant
(g, &, £;) in the presence of a free charge density p, is given
by the Maxwell equation

J9*d *d P de,od de, 0P de 0
e~ te,—te— —+ — —
0x oy az dx 0x o9y dy 9z 9z @)
~_1
Eopo,

where &, is the dielectric constant of the free space.
The potential P can be decomposed into two parts: the initial
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polarized field ®; due to py and the impending field &, caused
by polarization of dielectrics:

(I) = (I)() + (I)p. (5)
Substituting Eq. (5) into Eq. (4), we get
P P 3P, e, dD
s—2+te——t+e—+ e
ax? T dy? dz?  dx ax
4 98,08, de.00, 1
dy dy bz 9z &
(6
8P, a2, 9,
BTy iz T By 3y G az?
98, 0P, | e, 0%y de, 3Oy
dx dx 9y dy 9z dz )
Here ®,, @, should satisfy the following equations
1
Vb, = ——py (N
Eg
and
VD, = — - ®)
o P P

where py is the polarized charge volume density.

As noted earlier in the volume element method, we assume
that each cell has a volume polarized charge density and
that the impending field is caused by all these volume charges.
Specifically, we number all the n = N X N X N volume
elements (cubical cells) from ! to n. For each element j (1
= j = n) we assume a polarized charge volume density p;.
Let us denote the field caused by this volume charge as
@/, Thus

®p = El D5, 9
=

Let us denote the right hand of Eq. (6} for a volume element
i by —pj (where p} could be called a pseudo charge density):

j p— 1 i + 'aZCD6+
P Eopo £y axz

920}

8D}
8}’ ay2

€
' az?

deladi

dz oz’

251,00 1o

3e,3®%
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Substituting Eq. (9} into Eq. (6) and using Eq. (10}, we get for
each volume element i (1 =i = n)

R TIR TR Y
L + ey 3y + el 9z

. o (11
deia®y  delody  aslody .
dx dx dy dy dz oz
where @/ is the potential field at volume / caused by polarized
charge density in volume j.
If we denote the polarized field caused at volume element §
due to a unit polarized charge in volume element j by ¥/, then

B = p ¥ (12)

and Eq. (11} can be written as

>a;p= —p} (1 =i=n), {13)
=
where
RS 2% A Y
a; = & 7 &y ;e 2
dx dy dz
‘ . . . . . 14
deidWy  oejavy aclavy (14)
8x ax  ay dy  az dz

The basic idea behind the volume element method is to calculate
polarized charge densities p! in volume element j(1 = j = n)
by solving the matrix equation Eq. (13} and then to calculate
the impending field by summing the fields caused by these
charge densities. However, to do this one needs to calculate
pseudo charge densities pj and the matrix elements a;;. These
charge densities can be calculated by using Eq. (10) and the
average dielectric constants and their gradients as given by Eqs.
(2) and (3). The calculation of matrix elements a,; is described
in the next subsection.

2.3. Matrix Fvaluation

From Eq. (14), a;; is determined by the dielectric constant
(&1, &}, el) and its spatial derivatives, given by Eqs. (2) and
(3), and by ¥ whose calculation is described below.

Consider a uniformly distributed charge in volume element
Jj of unit volume density. Let the center of this volume element
be the origin of the coordinate system. Let r;; denote the vector
from the center of volume j to the center of volume i. Let 4;;
denote the length of ihis vector and (r};, 7}, r{;) its x, y, and
Z components.

For large d;;, the volume charge in element j can be treated
as a point charge at its center and the potential due to element
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J at the center of element i can be taken to be the same at all
points inside the element . For this case [2],

24]rij " x 32
Fvy g (L_s(r,J))’ 15)

ax? 47781] d?; d,SJ

where ¢ is the total charge in element j (which in this case
is the volume of the element j, the volume charge density
being equal to }), with similar equations for the y and
z directions.

For small 4, ;, when volume element i is close to element j,
theoretically it should be better to subdivide each of the volume
elements 7 and j further, calculate the gradient of the potential
field for each pair of subvolumes, and then average them to
get a better estimate of W, However, our calculation shows
that there is no real difference in the results with and without
subdivisons. Therefore, we use Eq. (15) for all pairs of volume
elements { and j (i # j).

When i = j, d;; = 0, one needs to calculate only the self-
induced field Wi which is the field of uniformly distributed
charge in volume element i of unit volume charge density.
Therefore, it satisfies the equation

aZ\If:;.'i 82'\1;:0! aZ'\If:;,]i _ 4__1_ (16)

dx? ay? az* Eq

Because of the symmetric distribution of charge in volume i,

g2 _ g2 _ 2l 1 an
dx? ay? az? Jeg
Integrating Eq. (17), one obtains
&‘I’i’,“ X
=—-—, 18
ax 3g, (18)

Averaging this gradient for all values of x within element i
gives a value zero for the whole volume element, i.e.,

Ay’
Py 0 (19)
Combining Eq {17) with Eq. (4) one obtains
_ gl + 8;. + gl 20)
ai; e, (

Now that we have all the mairix elements a;; evaluated, we
are ready to solve Eq. (13) for the polarized charge in each of
the volume elements. However, before we do so, we need to
discuss an important point, namely the elimination of the non-
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boundary volume elements, which will greatly reduce the size
of the matrix g;;.

24. Elimination of Non-Boundary Volume Elements

The matrix size is determined by the total number n of
volume elements. But there is a simple way to reduce the total
volume with which we need to be concerned. Physically, the
polarization charge occurs only between the boundaries of two
volume elements with different dielectric constants. However,
the EPIC approach [1], followed by volume linearization (Sec-
tion 2.1) causes the boundary surface to disappear. Therefore,
instead we use the concepts of boundary volume element and
non-boundary volume element.

We define the non-boundary volume element as the volume
element which satisfies the properties.

{21a)

Sx=8y=€z:£‘
and

de, as,f asz_
dx dy 03z

(21b)

In other words, non-boundary elements have an isotropic dielec-
tric constant which remains constant over the entire volume,
We will now show that for such volume elements the polarized
charge density can be calculated easily and that this density is
zero if there is no free charge in this volume.

For such a volume, for Egs. (21) and (10), the pseudo-charge
density is given by

. 1 {3 D) AD) D
—p= L& +220 0 @
Pe gft ° ( axt  ayr a7’ 22)

Since the initial field in this volume must satisfy the Poisson
equation

2P PP arP] 1
5 + 3 + 5 = — Ph.
dx oy dz £y
Equation (22) becomes
) 1-gt |
= - P (23)
Ep

For such elements, from Eq. (14),

WL R U
4, =& £y 211 I3
‘ ax* ay azt

) (i7J)

which by using Eq. (15) simplifies to
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g (3 3}
4778[] d,sJ dzj

L (24)
(i#])
This equation implies that there are no dielectric effects caused
on non-boundary elements by other volume elements.
From Eq. (20), the self-caused effect is given by

&l
;= - =

L=10]

(25)

Substiituting Eqs. (23) and (25) into the basic matrix equation
(13), we obtain

__“:‘j i 1—-s&
EDP ] 4
or
o1 =gt
p=—pi (26)
E

Thus, for non-boundary volume elements, the polarized charge
density is determined only by the initial free charge density
and the dielectric constant of the volume element. If the free
charge density is zero, the polarized charge density is also zero.

This discussion clearly shows that one should take out the
non-boundary volume element right from the beginning from
the matrix equation (13) and thus reduce the matrix size. For
the case of a dielectric sphere in vacuum, when the whole space
is divided into 14 X 14 X 14 = 1744 volume elements, the
removal of non-boundary volume elements (which are bound-
ary elements) drops the number to 928, dropping the matrix
size a;; from 1744 X 1744 to 928 X 928. We denote by B the
total number of boundary volume elements,

2.5. Solving Matrix Equation and Calculation
of Impending Field

The matrix in Eq. (13) is in general a dense and asymmetric
matrix but it has the property of diagonal elements being domi-
nant. Therefore, we can use the standard Gauss—Seidel method
to solve Eq. (13). (We note that the over-relaxation version of
this method causes convergence to slow down, therefore we
use the standard version only.)

The solution of the matrix equation (13) gives the polarized
charge densities in each volume element. One can then use any
discrete method to calculate the impending field at an arbitrary
peint. By adding the initial field to this field |Eq. (5)], one
then obtains the total final potential field. One can also easily
calculate the totat induced charge and various moments of
charges (e.g., dipole moment).

GOEL, KO, AND GANG

3. IMPLEMENTATION, EXPERIMENTS, AND RESULTS

To recap, the volume element method described above con-
sists of the following steps:

1. Take as input the geometrical shapes of different dielec-
tric objects together with their dielectric properties.

2. Divide the space into a cubical grid and run the com-
puter-graphics-based algorithmic version of EPIC [1] to get the
effective dielectric constants for each of the cubical cells.

3. Carry out the volume linearization to calculate average
dielectric constants and their gradients, to minimize surface
charges at boundaries between volume elements.

4. Use the initial field and initial free charge density to
calculate psendo charge densities in each volume element.

5. Determine the non-boundary volume elements and cal-
culate the polarized charge for these elements.

6. Evaluate the matrix element «;; for all pairs of boundary
volume elements,

7. Solve the matrix equation to calculate polarized volume
charge densities in each of the volume elements,

8. Calculate the impending field and the total field and any
other global information like total charge on dipole moment.

We have written a computer program in C language and
have implemented the method on SUN SPARCstation 10. We
tested our method against analytical results for the same three
cases discussed in [i] presented below. Before we give the
results, let us make a few peneral observations.

a. A conducting material is approximated by a dielectric
material of dielectric £ = 10°.

b. As could be expected, the computer time depends upon
the number of cells into which the space is divided. For the
resolution level of 5 X 5 X 5 cells, the computer time is about
5 sec. This time increases to about 20 sec for resolution of
10 X 10 X 10 and to about 20 min for resolution of 20 X 20
X 20. This non-linear increase is expected, since as the resolu-
tion is doubled, the number of volume elements is increased
by a factor of 8 and the number of matrix elements (without
deleting those elements associated with non-boundary volume
elements) by a factor of 8 = 64. A lower level resolution is
desired from a computational efficiency point of view but a
higher level resolution is warranted for accurate estimation of
electrostatic fields inside the dielectrics (where there is no real
non-boundary volume element). We found a good balance be-
tween efficiency and accuracy for a resolution level of 10 X 10
* 10. In the following we give results for this resolution level.

3.1. Dielectric Sphere in a Uniform Field

Here we have a dielectric sphere of radius 0.5, embedded in
a uniform electric field of strength 100, parallel to the z-direc-
tion. In Table I is given the comparison between numerical
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TABLE I

Comparison of Numerically Calculated and Analytical Results for the Dipole Moment (in the z-Direction)
and Total Positive Charge for a Dielectric Sphere in a Uniform Electric Field of Strength 100 in the z-Direction

Dipole moment

Total positive charge

Diclectric
constant £ Calculated Analytical % Difference Calculated Analytical % Difference
5 89.31 89.76 —(.50 132.92 134.64 —1.28
25 i41.41 139.63 1.27 20773 209.44 -0.82
1 165.21 157.08 547 239.11 23561 1.49

analytic results for a dipole moment in the z-direction (dipole
moments on the x and v directions are zero for both numerical
and analytical cases) and the total positive charge. We can see
that for the dielectric sphere the calculation of the dipole mo-
ment is quite accurate and this accuracy decreases to about 5%
as the sphere becomes a conducting sphere. The numerical
method slightly underestimates the total charge for the dielectric
sphere and overestimates it for the conducting sphere.

A better comparison between numerically calculated and
analytical results is presented in Figs. 2a and 2b where we plot
the total electrostatic field in the x—y plane for z = 0 for a
dielectric sphere. By comparing these figures, we note that in
general the numerically calculated field agrees well with the
analytical results for both inside and outside the dielectric
sphere. The slight difference is near the boundary of sphere:
for the analytic approach, there is a jump in the field while this
field changes smoothly for the numerical case, because volume
linearization methods smooth away the discontinuities between

.
i
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FIG. 2.

different dielectric media. It should be noted that the field inside
the sphere is lower than the external field and higher outside
the sphere due to polarized charges.

To summarize, our numerical method gives results for eleciri-
cal quantities of interest (field, total charge, dipole moment) to
within 2% for a large range of dielectric constants (& = 1000)
and to within about 5% for near-conducting sphere.

3.2, Dielectric Ellipsoid in a Uniform Field

We choose an ellipsoid with semi-axes of 3, 4, and 5, 1.¢e.,
the one whose surface is defined by the equation

2 2 2
S A

¥ g s @7

We take an initial field parallel to the z-axis, with a strength
of 10,
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(a) Analytically calculated E field in the x—y plane at z = 0 for ¢ = 5. (b) Same as (a) except for a numerically calculated field.
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FIG. 3.
numerically calculated values.

In Table II we give the comparison between numerically
calculated and analytical results for the dipole moment and
impending electric field inside the ellipsoid, both in the z-
direction (we omit the comparison for the total positive charge
as we did for the case of the sphere because the value for the
analytical case 18 not available). The impending potential out-
side the ellipsoid is plotted in Fig. 3 for both numerical and
anaiytical methods,

Table Il and Fig. 3 show that the numerical method gives
results within 2% for a dielectric ellipsoid and within 5% for
a near conducting ellipsoid.

3.3. Dielectric Sphere in a Point Charge Field

This case is similar to the first case expect that the initial
field is caused by a point charge of value 2000 located at a
distance d (d > 0.5) from the center of the sphere along the
z-axis.

Impending potential outside the ellipsoid of dielectric constants £ = 5, 25, and 1(°. Solid line represents analytical results while * denotes

In Table III are given the dipole moments along the z-direc-
tion for 4 = 3 as calculated numerically and analytically. One
can see that for this case the accuracy of the numerical method
is comparabie to that for a sphere in a parallel field.

But when the point charge is brought close to the sphere,
the numerical method has a problem. One of the physical con-
straints is that the total positive polarized (TPP) charge shouicd
equal the total negative polarized (TINP) charge. Let us call
this constraint a zero total charge constraint. For the present
case, this constraint is not satisfied well. For example, for 4 =
1.0 the TPP = 2204 and TNP = —204.2 (% difference =
7.34), while for d = 0.7 the TPP = 505.5 and TNP = —4219
(% difference = 16.54). This violation of the physical constraint
could be caused either by EPIC or volume linearization. To
investigate these possibilities, we made the grid finer in EPIC,
but the constraint was still violated. In volume linearization,
using the arithmetic average value for the interfacial cell dielec-

TABLE II

Comparison of Numerically Calculated and Analytical Results for the Dipole Moment (in the z-Direction}
and Impending Field in the z-Direction Inside a Dielectric Ellipsoid of Semi-axes 3, 4, and 5, Kept in a
Uniform Electric Field of Strength 10 in the z-Direction :

Dipole moment

Inside impending field

Diclectric
constant & Caleulated Analytical % Difference Calculated Analytical % Difference
3 5074.7 5129.2 ~1.06 -4.84 —4.90 —-1.23
25 9008.5 8923.2 0.96 —8.51 —8.52 0.086
10? 10968.0 104720 4.73 —-10.18 —-10.0 1.80
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TABLE 111

Comparison of Numerically Calculated and Analytical
Results for the Dipole Moment (in the z-Direction) for
a Dielectric Sphere of Radius 0.5 in an Electric Field
Caused by a Point Charge of Value 2000 Located at a
Distance 3 from the Center of the Sphere

Dipole moment

Dielectric
constant & Calculated  Analytical % Difference
5 —15.76 —15.87 —0.74
25 —24.86 —24.69 0.68
10% —28.98 —-27.78 433

tric constant did reduce the difference between TPP and TNP
by almost half, but not completely to zero.

With some effort, we found a rather simple approach to
resolve the problem. Let us denote the sum of all solutions of
the matrix equation (13) by §:

§=> p'=TPP+ TNP.

=

(28)

Physically, § should be zero. If it is not, we try to force it
by distributing free charge = —S§ on the dielectric sphere. The
simplest way is to distribute it uniformly. Therefore, we add
the free charge p® = —5/B to each cell. The additional polarized
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TABLE 1V

Comparison of Numerically Calculated and Analytical
Resulits for the Dipole Moment (in the z-Direction) for
a Dielectric Sphere of Radius 0.5 and Dielectric Constant
g = 5 in an Electric Field Cansed by a Point Charge of
Value 2000 Located at Distance d from the Center of
the Sphere, after Zero Total Charge Constraint Is Satisfied

Dipole moment

Distance of
charge Calculated  Analytical % Difference
1.0 —139.29 —142.86 ~2.50
07 —280.36 —291.55 ~3.84

charge of p” at the ith volume element is given by matrix
equation
A(p' +p=—p" (29)

where A is the matrix a;;. Rearranging the terms, one gets

Ap'=—p"I—A). (30
Physically, the sum of this new polarized charge,
B .
5= 20 P, (31

200 ! ) j T

-200 L

—400 . z

L L L ot i

0 2 4

Distance

FIG. 4. Impending potential for a sphere of radius 0.5 with dieleciric constant £ = 5 in the presence of a point charge of 2000 located at a distance 0.7
from its center. Solid line represents analytical results while * denotes the numerically calculated values.
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should be zero. If not, we distribute —S’ free charge again on
the sphere and determine the additional polarized charge. We
need to continue this process until the sum of polarized charges
approaches zerc. By examining this process, fortunately we
found that the ratio /S forms a geometrical series. Therefore,
we do not have to follow the iterative process; instead the total
charge needed in the volume element is

. p0+pif

3
1 —-5'/8 32)

and the total free charge added is — S5, which satisfies the zero
total charge constraint.

In Table IV we give the values of dipole moment in the
z-direction as calculated with the numerical method after
implementing the above constraint for ¢ = 1.0 and 0.7.
Comparing them with the analytical values, one sees that
they are quite good (but somewhat worse than those when
the zero total charge constraint is not satisfied; see Table
III). In Fig. 4 are given the impending potentials as calculated
by numerical and anaiytical methods for d = 0.7. As we can
see, the numerical value is within 5% of the analytical value.
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4. CONCLUSION AND FUTURE WORK

In this series of two papers, we have presented two novel
computationally faster approaches for solving the electrostatic
problem for arbitrary inhomogeneous dielectric media with
open boundary conditions, We tested them for three simple
cases and they both seem to work quite well. The first method,
the indirect boundary element method (IBEM), described in
the first paper [1] is more accurate than the volume element
method (VEM) described in this paper, but VEM is computa-
tionally faster; for the case of a dielectric sphere in a parallel
field, for a 10 X 10 X 10 grid, the CPU time for IBEM is
218.6 sec vs 14.5 sec for VEM. In the future, we plan io explore
these methods further by applying them to complex problems
and even solving problems other than electrostatic ones. It is
conceivable that a hybrid of these methods will emerge as
the opiimal choice from the point of view of computational
efficiency and accuracy.
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